A growing collection of bilevel problems
Quadratic-Nonlinear bilevel problem from [Mitsos & Barton, 2007]
Objective values | Solution point(s) |
---|---|
F* = 0.000 | x* = -0.567 |
f* = 0.000 | y* = 0.000 |
Has unique optimal solution point (x, y) = (-0.567, 0) with an objective values: F* = 0.0 and f* = 0.0.
Outer Problem | Inner Problem |
---|---|
![]() |
![]() |
AMPL
formatvar x >= -1, <= 1; # Outer variables
var y >= -1, <= 1; # Inner variables
var l{1..2} >= 0, <= 5; # KKT Multipliers
minimize outer_obj: (x-x)^2 + y^2; # Outer objective
subject to
# Outer constraints:
outer_con1: y <= 0.1;
outer_con2: -y <= 0.1;
# Inner objective:
inner_obj: x*y + exp(x)*y = 0;
# KKT conditions:
stationarity: x + exp(x) - l[1] + l[2] = 0;
complementarity_1: l[1]*(-1 - y) = 0;
complementarity_2: l[2]*(y - 1) = 0;